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Abstract. In this paper we investigate the behaviour of the Moszkowski model within
the context of quantum algebras. The Moszkowski Hamiltonian is diagonalized exactly
for different numbers of particles and for various values of the deformation parameter
of the quantum algebra involved, We also include cranking in our system and observe
its variation as a {unction of the deformation parameters.

1. Introduction

Quantum algebras [1], also known as quantum universal enveloping (QUE) algebras
are generalizations of the usuai Lie aigebras, differing from them in the associativity
condition. Instead of the usual Jacobi identity necessary to identify a Lie algebra,
the quantum algebras are required to satisfy a Yang-Baxter equation, also known
as a braid-Jacobi equation. QUE algebras are also called Hopf algebras. From
the physical point of view, they can describe deformations of systems previously
studied within the context of Lie algebras, i.e. they can describe perturbations from
some underlying symmetry structure. Stretching effects are taken into account when
one allows the algebra to deviate from the usual Lie algebra limit by means of a
deformation parameter. It is worth pointing out that the connection of QUE algebras
to g-groups is quite different from the usuval link established between Lic algebras
and Lie groups.

In order to study the many body problem microscopically, many exactly solvable
maodels have been develoned and utilized in investieatine more realistic theories [’)_TI
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Applications of quantum algebras to some of these models which obey a Lie a]gebra
structure [4] may help us to understand such features as symmetry breaking or phase
transitions. In this paper we study the behaviour of a system described by the
Moszkowski Hamiltonian [3] when deviations from the su(2) x su(2) algebra are
introduced. The Moszkowski model allows one to study the transition from the
vibrational (single-particle motion) to the rotational (collective motion) regime in the
atomic nucleus. We are interested in learning how the physical properties (namely
equilibrium energy, excitation energies, phase transitions) of particles described by
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this schematic model change when they are subject to quantum deformations. For
instance, the energy gap between the first excited state and the ground state is one
of the quantities which allows the verification of the existence of the phase transition
in this model. One may wonder whether this phase transition is preserved when
deviations from the underlying su(2) ® su(2) algebra are imposed; this point will be
discussed in a later section.

2. The Moszkowski model

21. The original model

The Moszkowski model is a two-level model, each level being N-fold degenerate with
two different kinds of particles, i.e. NN, particles of type a occupying two levels and

N wnoartinlag Af funa h Aaccriineing hun nthar lawale Tha mndal se tha furn Assmancinnal
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analogue of the Elliott model [5], which also includes a one-body spin-orbit term.
The su(2) x su(2) Hamiltonian which describes the model reads

H=e(J,(a) - J, (b)) + V(JI+ J}) (1)
where € is the energy difference between both levels, V is the interaction
J; = Ji(a) + Ji(b) JE=3"J7 iz ax,y,2 2)
i

and

@)= 5@ +I(e)  J(e)= -3 (@)=T(a) a=ab.
©

The quasi-spin operators J,, J,_ and J_ are related to the quantum numbers which
describe states of particles a and b. These quantum numbers are ¢ = +1/2, having
the value 1/2 in the upper level and —1/2 in the lower level and p (appearing below)
specifying the particular degenerate state within the level. In this way, J,, J, and
J_ are defined as

L t
J ()= Z E(QL,+1/2%.+1/2 — o, _1/2%,-1/2)
P
Jy(e) =) 0} 110 1p )
P

J_(a) = E a;,—l,'zo‘p.ﬂlz
P

where o = a, b, the creation operators aL +1/2 (b:, £12) Create a particle of type a (b)

in the state p with o = +}, and ¢, ,, (b, 1/2) are the corresponding annihilation
operators. The operators J, J_ and J, satisfy the following commutation relations

[J+(a)a J-(»G)] = 2-]2(0)5“‘3

[V.(e), Je(B)]) = £Js ()b

O
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and can be used in rewriting the Hamiltonian given in equation (1) yielding
H =e(J,(a) = J () + 3V (Jy(a)Jd_(a) + J_(a)J (a) + J,(b) J_(b)
+ J_(0)J,(8) + 2J, (a)J_(b) + 2J,(b)J_(a)). ©

Notice that the above Hamiltonian commutes with J,, but does not commute with
J2. The basis of states on which the Moszkowski Ham:ltoman can be diagonalized
exactly is given by

Iwab) = I%Nama”%szmb) (7)
where
N, N N N, N N,
ma=——2—a——2-‘-‘—+l,»..,“2—° mb=_"§é"' S +1,. -,—:f- @

Some features of the Moszkowski model have already been extensively
discussed [6~7], but our aim in this work is somewhat different. Here we discuss
the behaviour of the model within the context of quantum algebras.

2.2, The deformed model

.......... FC T Y

The Hamiltonian of the Moszkowski model can be written in the same form as
the one shown in equation (6), but the quasi-spin operators J. +» J_ and J, are now
generators of the of the su,(2) quantum algebra and, instead of obeying equations (5),
they satisfy the following commutation relations

74 (o), J_(B)] = (27, (@)]0 g

9
(J.(a), J (B)) = £J (a)b,g
where
q -T
T ——— 10
[z] = — (109)
l?l“d q =S {he de’llll’lll-ll’lVll Palamutel Uf thu algeblﬂ ‘I" ll-« I q - ]., l-bj — -b ‘v‘v’ithi'ﬁ .lhis

formalism, the application of the raising, lowering and J, (o) operators to a generic
ket of the deformed basis |J M) gives [8]

T (a)|J M) = M|JM)
J(@)lIMy = VIT=MIT+ M+ 1|JM +1) (11)

J_()IMy=VITFMI[T= M+ 1|JM - 1).

The Hamiltonian we call the (su(2) x su(2)),-Moszkowski Hamiltonian can be
diagonalized exactly with the help of equations (11). Notice that, whether it is
deformed or not, the operator J,(«) always has M as its eigenvalue, this being
the state on which it is acting. In the original Moszkowski model J, in |[J M_) is
associated with the total number of particles of type a (J, = N, /2) and J, with the
difference of occupation between levels o = 1/2 and ¢ = —1/2 (see equation (4))
and the same is valid concerning b particles. This interpretation is maintained in the
deformed case. The deformation parameter simulates a new kind of interaction, but
does not affect the way particles « and b are taken into account. At this point,
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we should also say that the deformation parameter can be written as ¢ = 14 T,
where T can be either real or imaginary and it is responsible for simulating a residual
interaction which can be either attractive or repulsive. The behaviour of this residual
interaction may depend on whether T is real or imaginary. In what follows, it is
always considered to be real.

3. Discussion of the results

In figure 1(a) we show the difference between the first excited state and the ground
state as a function of NV /¢, where N = N, + N, and N, = N, = 8 for ¢ = 1.0,
1.2 and 2.0. In figure 1(b) we have N, = N, = 30 and show curves for ¢ = 1.0, 1.1,
1.5 and 2.0. In both figures one may observe that when the interaction V is turned
off, (E,— Ey)/e is always equal to 1.0, independent of the number of particles
considered. This fact can be easily understood since, in this case, the Hamiltonian just
depends on J,(a) and J,(b) where, as already discussed, the deformation parameter
plays no rfle. Notice from this figure that the inclusion of small deformations
anticipates the phase transition that would happen in the N, + N, system for larger
interactions, and for larger systems, i.e. with more particles, this phase transition is
more pronounced for the same value of the deformation parameter. However, for
larger deformations, there appears a critical g, above which the phase transition is
suppressed. At this point it is worth emphasizing that whenever ¢, is reached, the
physics of the deformed system changes qualitatively in relation to the original model
and this critical deformation parameter is reached faster (smaller ¢ ) in systems with
more particles. We believe this is due to the fact that when g, is reached, the
interaction makes all particles very strongly correlated and the single-particle motion
completely disappears. Observation of figure 1 indicates that 7 (g = 14 7) simulates
an attractive residual interaction which gradually makes the motion of the system
become more and more collective.

e '.T e
. i !
. i ! ]
\\ I' f
N
N g ’_.f .
\\E ; ]
Y
"‘tl -]
1 -
1]
| L 2
o 1 0 1 2 3
NVe NV/e
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of NV/e, where N = Na+ Np and No = N, = 8 particles. The full curve shows the
function for ¢ = 1.0, the broken curve for ¢ = 1.2 and the dotted curve for ¢ = 2.0.
(b) As (@), but N, = N, = 30 particles. The full curve shows the function for ¢ = 1.0,
the broken curve for ¢ = L1, the chain curve for ¢ = 1.5 and the dotted curve for
g=2.0.



Quanturn algebraic description of the Moszkowski model 6321

{a)

0 P B T B R B
-3 -2 -1 0 1

0
NW/e NV/e

Flnlll‘f 2. fa\ Difference hetween the first mecited state and the oround state ae a function

i gl Usmiiis Sidi

of NV/e, whcrc N = Na+ Ny and N, = N, = 8 particles for ¢ = 1.0. The full
curve shows the function for w = 0.0, the broken curve for w = (.5 and the doited
curve for w = 1.0, (b)) As (g) but for g = 2.0,

Following the idea developed in (7], we introduce cranking as a way of imposing
a symmetry breaking in the system considered. For this purpose we add the term
—wJ, to the Hamiltonian shown in equation (6). This choice was made in contrast
to the one in [7] {(~w.J,) because in our model, J, is already the symmetry axis
(ie. [H,J,] = 0). The cranked Hamiltonian is given by

Hete = H = 5(Jp(@) + J_(a) + J, (6} + J_(b)). (12)

nanalizad for Aiffa

Honian, for N, = N R particles, is dit’iguualiauu 10T ainerent

Tha i
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values of w and the difference betwcen the first excited state and the ground state
as a function of NV /e is shown in figure 2(a) for ¢ = 1.0 and in figure 2(b) for
¢ = 2.0. For w = 0, the solid curves in figures 2(z) and 2(b) are the same as the
solid and dotted curves shown in figure 1(g). For the original Moszkowski system
shown in figure 2(a), the introduction of cranking (i.e. when w = 0.5 or w = 1.0)
completely suppresses the phase transition. Nevertheless, in the deformed system, the
phase transition is never suppressed so long as the deformation parameter remains
small for the number of particles under consideration, as can be seen in figure 2(b).

Another point investigated was the behaviour of the ground state as a function
of the J, projection for different values of ¢. The results we obtained are shown in
figure 3 for N, = N, = 30 particles and ¢ = 1.0, 1.1, 2.0 when the interaction is
kept fixed at V = +2. The general trend of the curves seems to remain the same
bui, for larger ¢ we Obtain higher minima. The critical deformation parameter q,,
already mentioned, also plays its réle here. When it is reached, both sides of the
curve close together.

To summarize, we would like to say that, in this work, the Moszkowski model has
been analysed in the context of the g-deformed su(2) @ su(2) algebra in order to
check the effects of the deformation parameter on the physical properties of systems
which can be described by this toy model. We have focused our attention on the first
two energy levels and their difference, which give new insights on the behaviour of
the phase transition.

Some work on the same lines as this paper has already been done, namely the
application of quantum algebras to the su(2) Lipkin model [9]. Generalizations from
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{ Figure 3. Ground state plotted against M, which is
.. the projection of the J; operator, for ¢ = 1.0 (full
30 curve), ¢ = 1.1 (broken curve) and ¢ = 2.0 (dotted
curve) for N, = N, = 30 particles and V = +2.

the classical to the quantum su( V) algebra have also been studied [10] and they can
be useful in helping to extend the above application to su(3), or even the su{N)
Lipkin model. This work is already under investigation.

Acknowledgments

The authors would like to thank very fruitful discussions with D Galetti, B M Pimentel
and C Lima. D Bonatsos also helped with useful remarks after reading the
manuscript. D P Menezes and S S Avancini are financially supported by CNPq-
Brazil.

References

[1] Macfarlane A J 1989 J Phys. A: Math. Gen. 22 4581
Biedenhamn L C 1989 J Phys. A: Math. Gen. 22 1.873
Chaichian M and Ellinas D 1990 Phys. Len. 234B 72
Brune M, Haroche S, Lefevre V, Raimond J M and Zagury N 1990 Phys. Rev Len. 68
Bonaisos D, Raychev P F and Faessier A 1591 Chem. FPhys Lei 178 221
Bonatsos D, Daskaloyannis C and Kokkotas K 1991 I Phys. A: Math. Gen. 24 1795
Iwao § 1990 Prog. Theor. Phys. 83 363

2} Lipkin H J, Meshkov N and Glick A J 1965 Nucl Phys. 62 188, 199, 211

[3] Moszkowski S A 1958 Phys. Rev 110 403

[4] Chaichian M, Eltinas D and Kulish P 1990 Pays. Rev Len. 65 980
Bonatsos D, Faessler A, Raychev P B, Roussev R P and Smimov Yu F 1992 J Phys. A: Math. Gen.

25 1267

[5] Elliott I P 1958 Proc. Roy. Soc. A 245 128, 562

[6] Marshalek E R 1982 Ann. Phys. 143 191

[7] Caldeira H, Providéncia C and Providéncia J Preprint Universidade de Coimbra

[8] Jimbo M 1985 Lew. Math Phys 10 63; 1986 Lew. Math. Phys. 11 247

[9] Galetti D and Pimentel B M 1992 Preprint IFT-P.012/92 UNESP

{10] Drinfeld V 1985 Sov Math. Dokl 32 254

Reshetikhin N and Semenov-Tian-Shansky M 1989 Ler. Math, Phys. 17 295
Sun C P and Fu H C 1989 I Phys. A: Maih. Gen. 22 1983
Ueno K, Takebayashi T and Shibukawa Y 1989 Let. Math. Phys. 18 215



