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Abstraer In this paper we investigate the behaviour of the Moukowski model within 
the mnten of quantum algebras. The Moszkwski Hamiltonian & diagonalized aractly 
for different numbers of panicles and for various values of the deformalion parameter 
of the quanlum algebra involved. W also include ranking in our system and observe 
its variation as a function of the deformation parameters, 

1. Introduction 

Quantum algebras [I], also known as quantum universal enveloping (QUE) algebras 
are generaiizations of the usuai Lie aigebras, dieering from them in the associaiivity 
condition. Instead of the usual Jacobi identity necessary to identify a Lie algebra, 
the quantum algebras are required to satisfy a Yang-Baxter equation, also known 
as a braidJacobi equation. From 
the physical point of view, they can describe deformations of systems previously 
studied within the context of Lie algebras, i.e. they can describe perturbations from 
some underlying symmetry structure. Stretching effects are taken into account when 
one allows the algebra to deviate from the usual Lie algebra limit by means of a 
deformation parameter. It is worth pointing out that the connection of QUE algebras 
to q-groups is quite different from the usual link established between Lie algebras 
and Lie groups. 

In order to study the many body problem microscopically, many exactly solvable 

Applications of quantum algebras to some of these models which obey a Lie algebra 
structure [4] may help us to understand such features as symmetly breaking or phase 
transitions. In this paper we study the behaviour of a system described by the 
Moszkowski Hamiltonian [3] when deviations from the su(2) x 4 2 )  algebra are 
introduced. The Moszkowski model allows one to study the transition from the 
vibrational (single-particle motion) to the rotational (collective motion) regime in the 
atomic nucleus. We are interested in learning how the physical properties (namely 
equilibrium energy, excitation energies, phase transitions) of particles described by 

11 Preunl address: Universidade Federal de Santa Caterina, Depto de Fisica, Raim llindade, 
88OW Florianoplis, SC, Brazil. 

QUE algebras are also called Hopf algebras. 
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this schematic model change when they are subject to quantum deformations. For 
instance, the energy gap between the first excited state and the ground state is one 
of the quantities which allows the verification of the existence of the phase transition 
in this model. One may wonder whether this phase transition is presewed when 
deviations from the underlying su(2) @ su(2) algebra are imposed; this p i n t  will be 
discussed in a later section. 

D P Menezer et al 

2. The Moszkowski model 

2.1. The original model 

The Moszkowski model is a two-level model, each level being N-fold degenerate with 
two different kinds of particles, i.e. Na particles of type a occupying two levels and 
' V )  p , L , L , U  "I , y p  Y "CCYpy1n.B L W "  " L l l L l  Ab"CI0. lllb III-CI w L l l r  L . I " V I I I I b . I ~ L " I I a ,  

analogue of the Elliott model [SI, which also includes a one-body spin-orbit term. 
The su(2) x su(2) Hamiltonian which describes the model reads 

AI nnrr:rlar nf h s n a  h ~ ~ - . . n . . : i n  h . 3 ~  -+ha- Ia..alr TI.- - 4 n l  :r +ha h.m A:-n-c:nm-l 

where e is the energy difference between both levels, V is the interaction 

Ji = J i (  a )  t Ji( b) J z  = J,' i = z, y, z (2) 

and 

J,(a) = y ( J + ( a )  t J - ( a ) )  
1 I 

J , (a )  = - ? ( J + ( a )  - J - ( a ) )  01 = a ,  b .  
~ 

(3) 

The quasi-spin operators J z ,  J+ and J- are related to the quantum numbers which 
describe states of particles a and b. These quantum numbers are U = i l / Z ,  having 
the value 1/2 in the upper level and -1/2 in the lower level and p (appearing below) 
specifying the particular degenerate state within the level. In this way, J,, J+ and 
J -  are defined as 

J * ( O )  = c f ( ~ ; . + l / z ~ p , + l / z  - O1;,- l /z~p,- l /z)  
P 

where a = a,  b, the creation operators (bL,+ , / z )  create a particle of type a (b) 
in the state p with U = ki, and a p,f1/2 (bp,*l/2) are the corresponding annihilation 
operators. The operators J+, J -  and J ,  satisfy the following commutation relations 

[ J t (o) , J - (P) I=  2 J z ( a ) 6 , p  

[J*(a),J*(P)l  = rtJ*(O1)6,p 
(5) 
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and can be used in rewriting the Hamiltonian given in equation (1) yielding 

If = E ( J z ( a )  - J,(b)) + i V ( J + ( a ) J - ( a )  + J-(a)J+(a) + J + ( b ) L ( b )  

+ J-(b)J+(b) + 2J+(a)J-(b) + 2J+(b)J-(a)). (6) 

Notice that the above Hamiltonian commutes with Jz, but does not mmmute with 
J2. The basis of states on which the Moszkowski Hamiltonian can be diagonalized 
exactly is given by 

I+ob) = IfNa%)IfN62%) (7) 
where 

Some features of the Moszkowski model have already been extensively 
discussed [&7], but our aim in this work is somewhat different. Here we discuss 
the behaviour of the model within the context of quantum algebras. 

2.2. The deformed model 

inc namiiiunisn of the Moszkowski modei can be written in the same form as 
the one shown in equation (6), but the quasi-spin operators J+, J- and J ,  are now 
generators of the of the su,(2) quantum algebra and, instead of obeying equations (S), 
they satisfy the following commutation relations 

".. ,T.-...&. 

where 

rsd 9 is :he &fG,Xc;iK pa:2me:e: Gf the a!@=. '?.%eii 4 - :, [z] = t. $+'ithiii et 
formalism, the application of the raising, lowering and J ,  (a) operators to a generic 
ket of the deformed basis I J M )  gives [SI 

J , ( a ) l J M )  = M I J M )  

J + ( a ) l J M ) =  J [ J -M][ J+M+1] I JM+1)  (11) 

J - ( a ) I J M )  = J [ J  + M ] [ J -  M + l]lJM - 1). 

The Hamiltonian we call the (su(2) x su(2)),-Moszkowski Hamiltonian can be 
diagonalized exactly with the help of equations (11). Notice that, whether it is 
deformed or not, the operator J , ( a )  always has M as its eigenvalue, this being 
the state on which it is acting. In the original Moszkowski model J, in ! J , M , )  is 
associated with the total number of particles of type a (J,, = N,,/2) and J, with the 
difference of occupation between levels U = 1/2 and U = -1/2 (see equation (4)) 
and the same is valid concerning b particles. This interpretation is maintained in the 
deformed case. The deformation parameter simulates a new kind of interaction, but 
does not affect the way particles a and b are taken into account. At this point, 
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we should also say that the deformation parameter can be written as q = 1 + T ,  

where T can be either real or imaginary and it is responsible for simulating a residual 
interaction which can be either attractive or repulsive. The behaviour of this residual 
interaction may depend on whether T is real or imaginary. In what follows, it is 
always considered to be real. 

D P Meneza et a1 

3. Discussion of the results 

In figure l(a) we show the difference between the first excited state and the ground 
state as a function of N V / e ,  where N = N ,  + Nb and N ,  = N b  = 8 for q = 1.0, 
1.2 and 2.0. In figure l(b) we have Na = N b  = 30 and show curves for Q = 1.0, 1.1, 
1.5 and 20. In both figures one may observe that when the interaction V is turned 
off, (E, - E " ) / €  is always equal to 1.0, independent of the number of particles 
considered. This fact can be easily understood since, in this case, the Hamiltonian just 
depends on J ,  (a )  and J ,  (b) where, as already discussed, the deformation parameter 
plays no r61e. Notice from this figure that the inclusion of small deformations 
anticipates the phase transition that would happen in the N ,  + Nb system for larger 
interactions, and for larger systems, i.e. with more particles, this phase transition is 
more pronounced for the Same value of the deformation parameter. However, for 
larger deformations, there appears a critical qe above which the phase transition is 
suppressed. At this point it is worth emphasizing that whenever q, is reached, the 
physics of the deformed system changes qualitatively in relation to the original model 
and this critical deformation parameter is reached faster (smaller q,) in systems with 
more particles. We believe this is due to the fact that when qr is reached, the 
interaction makes all particles very strongly correlated and the single-particle motion 
completely disappears. Observation of figure 1 indicates that 7 ( q  = 1 + T )  simulates 
an attractive residual interaction which gradually makes the motion of the system 
become more and more collective. 

2.5 

o 1.5 
w 
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Pl" .._ 1 I"\ niffsanrs I%.,%",.,%" ,he I?-, -*iter( *"A ,he -,,",i *% jl filnr,inn ..6".' .. ,*,- .......... I... .... .........-......-.. ........ ..... - ........... 
of N V I r ,  where N = N .  + N b  and N .  = Nb = 8 panicles. The full "e shows the 
function for q = 1.0, the bmken C U N ~  for q = 1.2 and the dotted N N e  for q = 2.0. 
(b) Ap (a), hut N .  = Nb = M panicles. lhe  full NNC shows the tunclion for q = 1.0, 
the h k e n  curve for q = 1.1,  the chain curve for q = 1.5 and the dolled curve for 
q = 2.0. 
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F!&Ke 2. (a) D!t?eYP!!ce k!%T!! !!!e k! eXCi!C? $!e!= 2.d !hC ,T..d I B ! C  P 2 f.,C!iQE 
of NI'/€, where N = N. + Nb and N ,  = Nb = 8 panicles for q = 1.0. ?he full 
C U N e  shows the function for w = 0.0, Ihe bmken a w e  far w = 0.5 and the dotted 
curve for w = 1.0. (b) As (0) but for q = 2.0. 

Following the idea developed in [7], we introduce cranking as a way of imposing 
a symmetry breaking in the system considered. For this purpose we add the term 
-wJ,  to the Hamiltonian shown in equation (6).  This choice was made in contrast 
to the one in [7] (-mJ,) because in our model, J ,  is already the symmetry axis 
(i.e. [ H , J , ]  = 0). The cranked Hamiltonian is given by 

(12) 

R e  Cr2rk-d Ea+,!miar, IC: 'Va = Nb = 8 p::ic!es, i3 diagm!izeb $: m e i e n t  

W 
H,,,, = H - z - ( J + ( u ) + J _ ( u ) + J + ( ~ ) + J _ ( ~ ) ) .  

values of w and the difference between the first excited state and the ground state 
as a function of NV/E. is shown in figure Z(a) for q = 1.0 and in figure 2(b) for 
q = 2.0. For w = 0, the solid curves in figures 2(a) and 2(b) are the same as the 
solid and dotted curves shown in figure l (a) .  For the original Moszkowski system 
shown in figure 2(a), the introduction of cranking (i.e. when w = 0.5 or w = 1.0) 
completely suppresses the phase transition. Nevertheless, in the deformed system, the 
phase transition is never suppressed so long as the deformation parameter remains 
small for the number of particles under consideration, as can be seen in figure 2(b). 

Another point investigated w a s  the behaviour of the ground state as a function 
of the J ,  projection for different values of q.  The results we obtained are shown in 
figure 3 for N ,  = N b  = 30 particles and q = 1.0, 1.1, 2.0 when the interaction is 
kept fixed at V = +2 .  The general trend of the curves seems to remain the same 
but, for larger q we obtain higher minima. The critical deformation parameter qc, 
already mentioned, also plays its r61e here. When it is reached, both sides of the 
curve close together. 
XI summarize, we would like to say that, in this work, the Moszkowski model has 

been analysed in the context of the qdeformed su(2) 8 su(2) algebra in order to 
check the effects of the deformation parameter on the physical properties of systems 
which can be described by this toy model. We have focused our attention on the first 
two energy levels and their difference, which give new insights on the behaviour of 
the phase transition. 

Some work on the same lines as this paper has already been done, namely the 
application of quantum algebras to the su(2) Lipkin model [9]. Generalizations from 
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Figure I Ground state plotted apinst M, which is 
the pmjenion of the J, operator, far q = 1.0 (full 

-30 -20 -U 0 10 20 30 awe) ,  7 = 1.1 (bmken curve) and g = 2.0 (dotted 
cuwe) for N. = Nb = 30 panicles and V = +2. 

-30 ' " ' I  ' " ' I  ' '  

M 

the classical to the quantum su( N) algebra have also been studied [lo] and they can 
be useful in helping to extend the above application to su(3), or even the su(N) 
Lipkin model. This work is already under investigation. 
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